
Innovative
 Integrationtel (818) 865-6150 • fax (818) 879-1770 • www.innovative-dsp.com78

The Zuma Toolset is a comprehensive, state-of-the-art collection of
tools used to develop application programs for Innovative
Integration’s family of digital signal processor boards. The Toolset
supports development of embedded DSP programs as well as 32-bit
Windows 95/NT 4.0 host PC programs that interact with embedded
DSP code in order to perform sophisticated, high-speed data
acquisition, control and signal processing tasks.

The Codewright
authoring tool is
used as the
cornerstone of
the Zuma DSP
code develop-
ment environ-
ment. While
Codewright
emulates all
popular editor
keymaps and
functions, it is
much more than just another editor. Codewright supports advanced
project management features including work spaces, multi-language
syntax highlighting (including TI C and Assembler) multi-file text
searches and replacements, automatic browse database creation and
literally hundreds of other professional features needed in the develop-
ment of complex embedded applications. Zuma further extends the
capabilities of Codewright via a custom DLL (dynamic link library) that
seamlessly creates and dispatches project make files for rapid regenera-
tion of target executables when any project dependency is changed.

Win32
compatible

development
language

Visual C/C++

Visual Basic

Borland Builder

Delphi

Code Hammer
debugger

Bus-Link
(PCI, ISA or
Serial Port)

.out

Bus Link (PCI, ISA or Serial Port)

MPSD/
JTAG
Link

Features

• Codewright integrated code authoring
environment including a world-class editor
augmented by a custom DLL to provide makefile
script generation and DSP software toolset
interface

• Target DSP example programs in source form
• Sample applications showing host PC as well as

target DSP coding techniques
• 250 function DSP & peripheral control library

with full source code
• One full year of hot-line technical support

Windows Compatible

• High-performance Ring 0, 32-bit
WindowsNT/95 device driver & dynamic link
library with numerous PC example programs in
source form

• Host support applets for automatic program
download, terminal emulation, COFF file
dumping and on-board flash programming

.exe

H
ost Development

Target Development

Included in the Zuma Toolset

250
function
DSP &

peripheral
library

DSP
example
programs

50 function
DSP

communica-
tions DLL

High-
performance
Ring-0 PC

device Driver

Host PC
examples

with source
code

Support
applets for
download

and software
debugging

Codewright code
authoring tool

DSP project extensions
DLL

TI C/Assembler examples

High-Performance Target Specific Libraries

Innovative
 Integration tel (818) 865-6150 • fax (818) 879-1770 • www.innovative-dsp.com 79

Once DSP code has been authored and successfully compiled, it is ready for
debugging. Zuma provides numerous, sophisticated debugging tools to support
both low- and high-level code penetration. Zuma is compatible with Code
Hammer, Innovative’s JTAG/MPSD hardware debugger, included in every
Development Package.

Furthermore, Zuma supports advanced high-level ANSI-C standard I/O
embedded directly into DSP code during the development cycle to
accommodate intuitive console I/O, file I/O and real-time graphics. Additional
utilities are provided to automate embedded file downloading during operating
system start-up and burning embedded applications into FLASH on target boards
featuring read-only memory.

A number of examples illustrating use of the DLL/Driver are supplied in
Zuma. The example programs highlight everything ranging from host-to-
target/target-to-host interrupts to common data passing techniques. One
of the examples implements a real-time oscilloscope that plots the DSP’s
analog inputs in real-time. Using the supplied DLL functions, the target
DSP control and data passing operations are reduced to just a dozen lines of
Visual C code!

Zuma represents a real and substative breakthrough in DSP application code development, providing the first, complete, advanced tool suite for the
generation of Innovative Integration DSP-based hardware-accelerated data acquisition, control and signal processing applications running under
Windows 95 and NT 4.0.

Zuma provides an exhaustive two-
hundred and fifty function target-specific
DSP and peripheral control library that
greatly simplifies target DSP application
development. Plus, the library routines
are amply illustrated via dozens of simple
example programs. Both the libraries
and examples are provided in full source
form. Using the peripheral libraries makes
development of complex DSP applica-
tions a snap!

Zuma support extends beyond target DSP development to include host PC code development as well. The Toolset includes a high-performance
custom, Ring-O (kernel mode) device driver and a fifty-function DLL which supports optimal-performance communications with the embedded
DSP board. The DLL/Driver provides all of the support functions needed to download code to the embedded DSP, control the card operation
and implement bidirectional data communications at full bus bandwidth – up to 132 Mbytes/sec on PCI-based DSP boards!

Category Available Routines

Digital Signal Processing FIR filters, Forward, inverse real and complex FFTs, Windowing, vector
operations.

Math Matrix arithmetic, statistics calculation.

Device Control High-performance real-time, A/D and D/A access. Maximum speed digital
I/O access.

Timers Programmable interval timers, counters, watchdog and real-time clock
support.

Communications Bus master transfers, mailbox I/O. Full ANSI C compatible standard I/O.
Software-based monitor (Talker).

Misc CPU register access and control. Memory sizing. CPU speed detection.
FIFO access. DMA register programming. Board initialization.

Innovative
 Integrationtel (818) 865-6150 • fax (818) 879-1770 • www.innovative-dsp.com80

The following is a partial list of C-callable functions contained in the board-specific peripheral libraries within the Development Package for each base board. The
first list covers target-callable functions, while the second covers host DLL functions. Each package includes numerous of example programs illustrating usage.

Target Procedure Function Target Procedure Function

ack Acknowledges a target board service request
acked Checks for acknowledge from target
disable_dpram Disables dual port RAM on the ISA bus
emit Transmits a terminal emulation character to the target board
enable_dpram Enables dual port ram on the ISA bus
dp_fetch Read number from dual port RAM
fetch Read number from Target address space
get_mailbox Gets ownership of the semaphore for the current mailbox
get_semaphore Gets ownership of a semaphore flag
kee Receives a terminal emulation character from the target board
monitor_mailbox Use the monitor mailbox
target_reset Places the target processor in reset
target_run Takes the target processor out of reset
read_mailbox Read from current mailbox, with handshaking
release_mailbox Releases ownership of the semaphore for the current mailbox
release_semaphore Releases ownership of a semaphore flag
run_free Releases the target board from JTAG halt mode
check_outbox Check for empty outgoing mailbox
clear_mailboxes Clear communications mailboxes
get_semaphore Obtain ownership of target hardware semaphore
host_interrupt_deinstall Remove target to source interrupt handler
host_interrupt_disable Disable target to host interrupts
host_interrupt_enable Begin processing target to host interrupts
host_interrupt_install Install target to host interrupt processing function
iicoffld Download program to Target

from_ieee Convert from host to TI FP format
own_semaphore Check ownership of target hardware semaphore
read_mailbox Reads data from an incoming mailbox
read_mb_terminate Read mailbox with success/failure
release_semaphore Relinquishes ownership of target hardware semaphore
request_semaphore Request ownership of target hardware semaphore
start_app Launch a DSP application
start_talker Starts Talker program execution on the target
talker_download Downloads a data section to target memory
talker_fetch Fetch value from target memory
talker_store Store value to target memory
target_cardinfo Return address of target CARDINFO structure
target_check Verifies presence of target in system
target_close Close the target
target_control Update bit in specified target control register
target_inport Fetch value from specified target host I/O register
target_interrupt Triggers a host-to-target processor interrupt
target_open Open a DSP target board VxD for communication
target_opreg_inport Fetch valve from specified operating space register
target_opreg_outport Store valve from specified operating space register
target_outport Store value to specified target host I/O register
target_reset Place target processor in reset and clear communication mailboxes
target_run Releases target from reset
to_ieee Convert from TI to host FP format
write_mailbox Write to target mailbox
write_mb_terminate Write mailbox with success/failure

adc Read A/D conversion results
adc_convert Start conversion on A/D
baud Set baud rate on current serial port
bold Set console text bold attribute
calibrate_analog Command A/D calibration and wait for completion
clreol Clear console to end of line
clrscr Clear console screen
cpu Set CPU number and mailbox
cpu_number Get CPU number
cpu_speed Derive DSP clock speed
cursor Enable/disable console cursor
dac Write new data to the D/A’s
dac_convert Update D/A outputs
deinstall_int_vector Remove vector from vector table
disable_interrupt Disable specific interrupt
emit Send a character to the terminal emulator
enable_analog Initialize analog subsystem
enable_interrupt Enable specific interrupt
fclose Close a host disk file
fcreate Open a host disk file for write
ffft_rl Forward Fast Fourier Transform - Real
fir Finite Impulse Response Filter
flush Clear the current serial port’s receive buffer
from_ieee Convert from IEEE-754 Floating point format
fopen Open a host disk file for read
fread Read from host disk file via dual port RAM
fwrite Write to host disk file via dual port RAM
get_abits Retrieve current ABITS output values
get_attribute Get current console text attribute type
get_DIE Retrieve 320C4x DIE register
get_gain_a Retrieve current A/D channel A gain setting
get_gain_b Retrieve current A/D channel B gain setting
get_IE Retrieve 320C3x IE register
get_IIE Retrieve 320C4x IIE register
get_IF Retrieve 320C3x IF register
get_IIF Retrieve 320C4x IIF register
get_ST Retrieve 320C3x/4x Status register
get_mailbox Get access to dual port RAM mailbox
get_mux_a Retrieve current A/D channel A multiplexer setting
get_mux_b Retrieve current A/D channel B multiplexer setting
get_semaphore Get hardware semaphore
get_ST Retrieve 320C3x/4x ST register
getchar ANSI get character from console
getint Get integer from console
gets ANSI gets from console
gotoxy Set cursor position
ifft_rl Inverse Fast Fourier Transform - Real
init_queue Initialize the serial I/O receive queue
init_serial Initialize the serial I/O system
install_interrupt_vector Install vector into vector table
kbd_hit Check for an available keystroke at the console

kbd_key Get a key from the terminal emulator
monitor_mailbox Set current dual port RAM mailbox
ms Dwell milliseconds
normal Set console text normal attribute
packb Pack byte value into int
packh Pack half word value into int
poll_ser_kbd_hit Check for available keys on the current serial port
printf ANSI printf to console
putchar ANSI put character to console
putint Send integer to console
puts ANSI puts to console
random Return positive random number less than ceiling
r_cmd Read 8530 read register
read_mailbox Read from current dual port RAM mailbox, with handshaking
release_mailbox Relinquish access to dual port RAM mailbox
release_semaphore Release hardware semaphore
scanf ANSI scanf from console
ser_emit Transmit a single character out the console
ser_getchar Get a key from the serial port
ser_kbd_hit Check for available keys on the current serial port
ser_key Get a character from the current serial channel (polled)
ser_putchar Transmit a single character out the current serial port
ser_type Transmit a character string out the current serial port
serial_port Set current serial port
set_abits Set the ABITS output bits
set_attribute Set current console text attribute type
set_DIE Set 320C4x DIE register
set_gain_a Set current A/D channel A gain
set_gain_b Set current A/D channel B gain
set_IE Set 320C3x IE register
set_IF Set 320C3x IF register
set_IIE Set 320C4x IIE register
set_IIF Set 320C4x IIF register
set_mux_a Set current A/D channel A multiplexer setting
set_mux_b Set current A/D channel B multiplexer setting
set_PC Set processor program counter
set_ST Set processor status register
sscanf ANSI sscanf from console
sprintf ANSI sprintf
terminal_mailbox Set current dual port RAM mailbox
timer Set hardware timer frequency
timers Initialize skewed timer channels
to_ieee Convert to IEEE-754 Floating point format
type Send a character string to the terminal emulator
uclock Get system millisecond timer value
unpackb Unpack byte values from int
unpackh Unpack half word values from int
us Dwell microseconds
w_cmd Write 8530 write register
wherexy Get cursor position
write_mailbox Write to current dual port RAM mailbox, with handshaking

Host Procedure Function Host Procedure Function

Host PC and Target DSP Functions

